Câu hỏi:
2 năm trước

 Số tiếp tuyến của đồ thị hàm số \(y=\frac{3x-1}{x-3}\) song song với đường thẳng \(y=-\,2x+1\) là

Trả lời bởi giáo viên

Đáp án đúng: d

Gọi \(M\left( a;y\left( a \right) \right)\in \left( C \right),\) có \({y}'\left( a \right)=-\frac{8}{{{\left( a-3 \right)}^{2}}}\)\(\Rightarrow \) Phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\) là \(y-y\left( a \right)={y}'\left( a \right)\left( x-a \right)\Leftrightarrow y=-\frac{8}{{{\left( a-3 \right)}^{2}}}\left( x-a \right)+\frac{3a-1}{a-3}\,\,\left( d \right).\)

Vì \(\left( d \right)\) song song với đường thẳng \(y=-\,2x+1\) nên suy ra \(-\frac{8}{{{\left( a-3 \right)}^{2}}}=-\,2\Leftrightarrow {{\left( a-3 \right)}^{2}}=4\Leftrightarrow \left[ \begin{align}  & a=5 \\ & a=1 \\\end{align} \right..\)

Khi đó, phương trình\(\left[ \begin{array}{l}
y = - \,2\left( {x - 5} \right) + 7\\
y = - \,2\left( {x - 1} \right) - 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
y = - \,2x + 17\\
y = - \,2x + 1 \, \, (ktm)
\end{array} \right..\)

Hướng dẫn giải:

Lập phương trình tiếp tuyến của đồ thị hàm số, sử dụng điều kiện để hai đường thẳng song song để xác định số tiếp tuyến cần tìm.

Câu hỏi khác