Phương trình \(\sqrt {4{x^2} - 4x + 5} + \sqrt {12{x^2} - 12x + 19} = 6\) có nghiệm là $\dfrac{a}{b}\,\left( {a,b > 0} \right)$. Tính $a - b$.
Trả lời bởi giáo viên
Ta có \(\sqrt {4{x^2} - 4x + 5} + \sqrt {12{x^2} - 12x + 19} = 6\)$ \Leftrightarrow \sqrt {{{\left( {2x - 1} \right)}^2} + 4} + \sqrt {12{{\left( {x - \dfrac{1}{2}} \right)}^2} + 16} = 6$
Nhận thấy $\sqrt {{{\left( {2x - 1} \right)}^2} + 4} \ge 2;\sqrt {12{{\left( {x - \dfrac{1}{2}} \right)}^2} + } 16 \ge 4$ nên $ \Leftrightarrow \sqrt {{{\left( {2x - 1} \right)}^2} + 4} + \sqrt {12{{\left( {x - \dfrac{1}{2}} \right)}^2} + 16} \ge 6$
Dấu “=” xảy ra khi $\left\{ \begin{array}{l}\sqrt {{{\left( {2x - 1} \right)}^2} + 4} = 2\\\sqrt {12{{\left( {x - \dfrac{1}{2}} \right)}^2} + 16} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x - 1 = 0\\x - \dfrac{1}{2} = 0\end{array} \right. \Rightarrow x = \dfrac{1}{2}$
Vậy phương trình đã cho có nghiệm duy nhất $x = \dfrac{1}{2}$.
Từ đó suy ra $a = 1;b = 2 \Rightarrow a - b = - 1$.