Năm học 2019 – 2020, bạn An trúng tuyển vào lớp 10 trường THPT X. Để chuẩn bị cho năm học mới, lúc đầu An dự định mua 30 quyển tập và 10 cây viết cùng loại với tổng số tiền phải trả là 340 nghìn đồng. Tuy nhiên, vì đạt danh hiệu học sinh giỏi nên An được nhận phiếu giảm giá 10% với tập và 5% với viết, do đó An quyết định mua 50 quyển tập và 20 cây viết với tổng số tiền phải trả sau giảm giá là 526 nghìn đồng. Hỏi giá tiền mỗi quyển tập và mỗi cây viết là bao nhiêu?
Trả lời bởi giáo viên
Gọi số tiền 1 quyển tập lúc chưa giảm giá là \(x\) (nghìn đồng) \(\left( {x > 0} \right).\)
Gọi số tiền 1 cây viết lúc chưa giảm giá là \(y\) (nghìn đồng) \(\left( {y > 0} \right).\)
Lúc đầu, An dự định mua 30 quyển tập và 10 cây viết hết 340 nghìn đồng nên ta có phương trình:
\(30x + 10y = 340\,\,\,\,\,\left( 1 \right).\)
Số tiền mua 1 quyển tập sau khi được giảm giá \(10\% \) là: \(x - x.10\% = 90\% x\) (nghìn đồng)
Số tiền mua 1 cây viết sau được khi giảm \(5\% \) là: \(y - y.5\% = 95\% y\) (nghìn đồng).
An mua 50 quyển tập và 20 cây viết với giá đã được giảm hết 526 nghìn đồng nên ta có phương trình:
\(50.90\% x + 20.95\% y = 526 \Leftrightarrow 45x + 19y = 526\,\,\,\,\left( 2 \right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\begin{array}{l}\left\{ \begin{array}{l}30x + 10y = 340\\45x + 19y = 526\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x + y = 34\\45x + 19y = 526\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}45x + 15y = 510\\45x + 19y = 526\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}4y = 16\\3x + y = 34\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 4\\3x + 4 = 34\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 10\,\,\,\,\left( {tm} \right)\\y = 4\,\,\,\,\,\left( {tm} \right)\end{array} \right.\end{array}\)
Vậy lúc chưa giảm giá, mỗi quyển tập là 10 nghìn đồng và mỗi cây bút là 4 nghìn đồng.
Hướng dẫn giải:
Gọi số tiền 1 quyển tập lúc chưa giảm giá là \(x\) (nghìn đồng) \(\left( {x > 0} \right).\)
Gọi số tiền 1 cây viết lúc chưa giảm giá là \(y\) (nghìn đồng) \(\left( {y > 0} \right).\)
Biểu diễn các đại lượng chưa biết theo các đại lượng đã biết và các ẩn đã gọi.
Lập hệ phương trình, giải hệ phương trình tìm các ẩn, đối chiếu với điều kiện rồi kết luận.