Câu hỏi:
2 năm trước

Không giải phương trình, tính tổng hai nghiệm (nếu có) của phương trình \( - 3{x^2} + 5x + 1 = 0\).

Trả lời bởi giáo viên

Đáp án đúng: d

Phương trình \( - 3{x^2} + 5x + 1 = 0\) có \(\Delta  = {5^2} - 4.1.\left( { - 3} \right) = 37 > 0\) nên phương trình có hai nghiệm \({x_1};{x_2}\)

Theo hệ thức Vi-et ta có \({x_1} + {x_2} =  - \dfrac{5}{{ - 3}} \Leftrightarrow {x_1} + {x_2} = \dfrac{5}{3}\).

Hướng dẫn giải:

Sử dụng hệ thức Vi-et:

Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\,\,(a \ne 0)\) thì  \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

Câu hỏi khác