Trả lời bởi giáo viên
Đáp án đúng: a
Ta có: \(\left\{ \begin{array}{l}S = u + v = m + 1 - m = 1\\P = uv = m\left( {1 - m} \right)\end{array} \right. \Rightarrow u,v\) là hai nghiệm của phương trình \({x^2} - x + m\left( {1 - m} \right) = 0\).
Hướng dẫn giải:
Hai số \(u,v\) có \(u + v = S;uv = P\) thì \(u,v\) là hai nghiệm của phương trình \({x^2} - Sx + P = 0\).