Hai ô tô khởi hành cùng 1 lúc từ A đến B cách nhau $300$ km. Ô tô thứ nhất mỗi giờ đi nhanh hơn ô tô thứ hai $10\,$ km nên đến B sớm hơn ô tô thứ hai $1h.$ Tìm vận tốc mỗi xe.
Trả lời bởi giáo viên
Gọi vận tốc ô tô thứ nhất và thứ hai lần lượt là $x$ và $y{\rm{ }}\left( {km/h;{\rm{ }}x,y > 0} \right).$
Ô tô thứ nhất mỗi giờ đi nhanh hơn ô tô thứ hai $10$ km nên ta có phương trình: $x - y = 10\begin{array}{*{20}{c}}{}&{}\end{array}(1)$
Ô tô thứ nhất đến sớm hơn ô tô thứ hai 1h nên ta có:
$\dfrac{{300}}{y} - \dfrac{{300}}{x} = 1$(2)
Từ (1) và (2) ta có:
$\left\{ \begin{array}{l}x - y = 10\\\dfrac{{300}}{y} - \dfrac{{300}}{x} = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x - y = 10\\300x - 300y = xy\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = y + 10\\300(y + 10) - 300y = (y + 10)y\end{array} \right.$
$ \Leftrightarrow \left\{ \begin{array}{l}x = y + 10\\{y^2} + 10y - 3000 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = y + 10\\\left[ \begin{array}{l}y = 50(tm)\\y = - 60(ktmdk)\end{array} \right.\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 60\\y = 50\end{array} \right.$
Vậy vận tốc của ô tô thứ nhất và thứ hai lần lượt là $60$ km/h và $50$ km/h.
Hướng dẫn giải:
Bước 1: Lập hệ phương trình
1) Chọn ẩn và tìm điều kiện của ẩn (thông thường ẩn là đại lượng bài toán yêu cầu tìm)
2) Biểu thị các đại lượng chưa biết theo ẩn và các đại lượng đã biết
3) Lập phương trình biểu thị mối quan hệ giữa các đại lượng.
Bước 2: Giải hệ phương trình
Sử dụng các phương pháp thế, cộng đại số, đặt ẩn phụ…
Bước 3: Kết luận