Câu hỏi:
2 năm trước

Gọi ${x_1};{x_2}$ là nghiệm của phương trình $ - 2{x^2} - 6x - 1 = 0$. Không giải phương trình, tính giá trị của biểu thức $N = \dfrac{1}{{{x_1} + 3}} + \dfrac{1}{{{x_2} + 3}}$

Trả lời bởi giáo viên

Đáp án đúng: a

Phương trình $ - 2{x^2} - 6x - 1 = 0$ có $\Delta  = {\left( { - 6} \right)^2} - 4.\left( { - 2} \right).\left( { - 1} \right) = 28 > 0$ nên phương trình có hai nghiệm ${x_1};{x_2}$

Theo hệ thức Vi-et ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right.. \Leftrightarrow \left\{ \begin{array}{l}{x_1} + {x_2} =  - 3\\{x_1}.{x_2} = \dfrac{1}{2}\end{array} \right.\).

Ta có $N = \dfrac{1}{{{x_1} + 3}} + \dfrac{1}{{{x_2} + 3}} = \dfrac{{{x_1} + {x_2} + 6}}{{{x_1}{x_2} + 3\left( {{x_1} + {x_2}} \right) + 9}} = \dfrac{{ - 3 + 6}}{{\dfrac{1}{2} + 3.\left( { - 3} \right) + 9}}$$ = 6$

Hướng dẫn giải:

Bước 1: Sử dụng  hệ thức Vi-et

Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình $a{x^2} + bx + c = 0\,\,(a \ne 0)$ thì  \(\left\{ \begin{array}{l}{x_1} + {x_2} = \dfrac{{ - b}}{a}\\{x_1} \cdot {x_2} = \dfrac{c}{a}\end{array} \right..\)

Bước 2: Biến đổi biểu thức $N$ để sử dụng được hệ thức Vi-et.

Câu hỏi khác