Giá trị của biểu thức \(\sqrt {{{\left( {4 - \sqrt 5 } \right)}^2}} - \sqrt {6 - 2\sqrt 5 } \) là:
Trả lời bởi giáo viên
\(\sqrt {{{\left( {4 - \sqrt 5 } \right)}^2}} - \sqrt {6 - 2\sqrt 5 } \)\( = \sqrt {{{\left( {4 - \sqrt 5 } \right)}^2}} - \sqrt {5 - 2\sqrt 5 + 1} = \sqrt {{{\left( {4 - \sqrt 5 } \right)}^2}} - \sqrt {{{\left( {\sqrt 5 - 1} \right)}^2}} \)
\(= \left| {4 - \sqrt 5 } \right| - \left| {\sqrt 5 - 1} \right| \)
\(= 4 - \sqrt 5 - \sqrt 5 + 1 =5-2\sqrt 5 \)
Hướng dẫn giải:
-Đưa biểu thức dưới dấu căn về hằng đẳng thức \({a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2};{a^2} - 2ab + {b^2} = {\left( {a - b} \right)^2}\)
-Sử dụng hằng đẳng thức \(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}A\,\,khi\,\,A \ge 0\\ - A\,\,khi\,\,A < 0\end{array} \right.\)
-Cộng trừ các căn thức bậc hai.