Trả lời bởi giáo viên
Ta có $\dfrac{{2xy - {x^2}}}{{2{y^2} - xy}} = \dfrac{{x\left( {2y - x} \right)}}{{y\left( {2y - x} \right)}} = \dfrac{x}{y}$ nên A đúng.
+) $\dfrac{{\left( {x - 2} \right)\left( {x + 4} \right)}}{{{x^2} + 7x + 12}} = \dfrac{{\left( {x - 2} \right)\left( {x + 4} \right)}}{{{x^2} + 3x + 4x + 12}} = \dfrac{{\left( {x - 2} \right)\left( {x + 4} \right)}}{{\left( {x + 3} \right)\left( {x + 4} \right)}} = \dfrac{{x - 2}}{{x + 3}}$ nên B đúng.
+) $\dfrac{{\left( {2x - 4} \right)\left( {x - 3} \right)}}{{\left( {{x^3} - 27} \right)\left( {x - 2} \right)}} = \dfrac{{2\left( {x - 2} \right)\left( {x - 3} \right)}}{{\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right)\left( {x - 2} \right)}} = \dfrac{2}{{{x^2} + 3x + 9}}$ nên C sai.
+) $\dfrac{{25x{y^2}}}{{40{x^3}{y^2}}} = \dfrac{{5x{y^2}.5}}{{5x{y^2}.8{x^2}}} = \dfrac{5}{{8{x^2}}}$ nên D đúng.
Hướng dẫn giải:
- Phân tích tử số và mẫu số thành nhân tử.
- Xác định nhân tử chung.
- Chia cả tử và mẫu cho nhân tử chung.
Giải thích thêm:
Một số em có thể sai hằng đẳng thức \({x^3} - 27 = \left( {x - 3} \right)\left( {{x^2} - 3x + 9} \right)\) dẫn đến chọn C đúng.