Câu hỏi:
2 năm trước

Cho tam giác đều ABC nội tiếp đường tròn (O; R). Kẻ đường kính AD cắt BC tại H. Gọi M là một điểm trên cung nhỏ AC. Hạ \(BK \bot AM\) tại K. Đường thẳng BK cắt CM tại E. Tia BE cắt đường tròn (O; R) tại N (N khác B).

Chọn câu đúng. Tam giác MBE

Trả lời bởi giáo viên

Đáp án đúng: a

Xét đường tròn \(\left( O \right)\) có tam giác \(ABC\) đều nên sđ \(AB = sd\,AC = sd\,BC = \dfrac{{360^\circ }}{3} = 120^\circ \)

\(\widehat {AMB}\) là góc nội tiếp chắn cung \(AB \Rightarrow \widehat {AMB} = \dfrac{1}{2}sd\,AB = \dfrac{{120^\circ }}{2} = 60^\circ \)

Suy ra \(\widehat {KBM} = 90^\circ  - \widehat {KMB} = 90^\circ  - 60^\circ  = 30^\circ \)  suy ra \(sd\,NM = 2.\widehat {NBM} = 2.30^\circ  = 60^\circ \)

\(\widehat {NBM} = 30^\circ \left( {cmt} \right)\) và \(\widehat {BEM} = \dfrac{1}{2}\left( {sd\,BC - sd\,NM} \right) = \dfrac{1}{2}\left( {120^\circ  - 60^\circ } \right) = 30^\circ \) nên tam giác \(MBE\) cân tại \(M.\)

Hướng dẫn giải:

Chứng minh tam giác \(MBE\) có hai góc ở đáy bằng nhau

Sử dụng:

+ Số đo góc nội tiếp bằng nửa số đo cung bị chắn

+ Góc có đỉnh bên ngoài đường tròn bằng nửa hiệu số đo hai cung bị chắn

Câu hỏi khác