Cho phương trình \({x^2} - 4x - 3 = 0\) có hai nghiệm phân biệt \({x_1},{x_2}\). Không giải phương trình, hãy tính giá trị của biểu thức \(T = \dfrac{{x_1^2}}{{{x_2}}} + \dfrac{{x_2^2}}{{{x_1}}}\).
Trả lời bởi giáo viên
Ta thấy \(a.c = 1.\left( { - 3} \right) = - 3 < 0\) nên phương trình luôn có hai nghiệm phân biệt \({x_1},{x_2} \ne 0\) thỏa mãn \(\left\{ \begin{array}{l}{x_1} + {x_2} = 4\\{x_1}{x_2} = - 3\end{array} \right.\)
Khi đó,
\(\begin{array}{l}T = \dfrac{{x_1^2}}{{{x_2}}} + \dfrac{{x_2^2}}{{{x_1}}} = \dfrac{{x_1^3 + x_2^3}}{{{x_1}{x_2}}}\\\,\,\,\,\, = \dfrac{{{{\left( {{x_1} + {x_2}} \right)}^3} - 3{x_1}{x_2}\left( {{x_1} + {x_2}} \right)}}{{{x_1}{x_2}}}\\\,\,\,\,\, = \dfrac{{{4^3} - 3.\left( { - 3} \right).4}}{{ - 3}}\\\,\,\,\,\, = - \dfrac{{100}}{3}\end{array}\)
Vậy \(T = - \dfrac{{100}}{3}\).
Hướng dẫn giải:
Sử dụng hệ thức Vi-ét