Câu hỏi:
2 năm trước

Cho \(P = \dfrac{{\left( {{x^2} + a} \right)\left( {1 + a} \right) + {a^2}{x^2} + 1}}{{\left( {{x^2} - a} \right)\left( {1 - a} \right) + {a^2}{x^2} + 1}}\). Kết luận nào sau đây là đúng.

Trả lời bởi giáo viên

Đáp án đúng: b

Ta có \(P = \dfrac{{\left( {{x^2} + a} \right)\left( {1 + a} \right) + {a^2}{x^2} + 1}}{{\left( {{x^2} - a} \right)\left( {1 - a} \right) + {a^2}{x^2} + 1}}\)\( = \dfrac{{{x^2} + a{x^2} + a + {a^2} + {a^2}{x^2} + 1}}{{{x^2} - a{x^2} - a + {a^2} + {a^2}{x^2} + 1}}\) \( = \dfrac{{\left( {{x^2} + a{x^2} + {a^2}{x^2}} \right) + \left( {a + {a^2} + 1} \right)}}{{\left( {{x^2} - a{x^2} + {a^2}{x^2}} \right) + \left( {{a^2} - a + 1} \right)}}\)

\( = \dfrac{{{x^2}\left( {1 + a + {a^2}} \right) + \left( {1 + a + {a^2}} \right)}}{{{x^2}\left( {1 - a + {a^2}} \right) + \left( {1 - a + {a^2}} \right)}} = \dfrac{{\left( {{x^2} + 1} \right)\left( {{a^2} + a + 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{a^2} - a + 1} \right)}} = \dfrac{{{a^2} + a + 1}}{{{a^2} - a + 1}}\)

Vậy \(P = \dfrac{{{a^2} + a + 1}}{{{a^2} - a + 1}}\) không phụ thuộc vào \(x\) .

Hướng dẫn giải:

Rút gọn \(P\) :

- Phân tích tử số và mẫu số thành nhân tử.

- Xác định nhân tử chung.

- Chia cả tử và mẫu cho nhân tử chung.

Giải thích thêm:

Một số em có thể chọn luôn D do chưa rút gọn hoặc rút gọn sai \(P\) .

Câu hỏi khác