Cho \(P = \dfrac{{\left( {{x^2} + a} \right)\left( {1 + a} \right) + {a^2}{x^2} + 1}}{{\left( {{x^2} - a} \right)\left( {1 - a} \right) + {a^2}{x^2} + 1}}\). Kết luận nào sau đây là đúng.
Trả lời bởi giáo viên
Ta có \(P = \dfrac{{\left( {{x^2} + a} \right)\left( {1 + a} \right) + {a^2}{x^2} + 1}}{{\left( {{x^2} - a} \right)\left( {1 - a} \right) + {a^2}{x^2} + 1}}\)\( = \dfrac{{{x^2} + a{x^2} + a + {a^2} + {a^2}{x^2} + 1}}{{{x^2} - a{x^2} - a + {a^2} + {a^2}{x^2} + 1}}\) \( = \dfrac{{\left( {{x^2} + a{x^2} + {a^2}{x^2}} \right) + \left( {a + {a^2} + 1} \right)}}{{\left( {{x^2} - a{x^2} + {a^2}{x^2}} \right) + \left( {{a^2} - a + 1} \right)}}\)
\( = \dfrac{{{x^2}\left( {1 + a + {a^2}} \right) + \left( {1 + a + {a^2}} \right)}}{{{x^2}\left( {1 - a + {a^2}} \right) + \left( {1 - a + {a^2}} \right)}} = \dfrac{{\left( {{x^2} + 1} \right)\left( {{a^2} + a + 1} \right)}}{{\left( {{x^2} + 1} \right)\left( {{a^2} - a + 1} \right)}} = \dfrac{{{a^2} + a + 1}}{{{a^2} - a + 1}}\)
Vậy \(P = \dfrac{{{a^2} + a + 1}}{{{a^2} - a + 1}}\) không phụ thuộc vào \(x\) .
Hướng dẫn giải:
Rút gọn \(P\) :
- Phân tích tử số và mẫu số thành nhân tử.
- Xác định nhân tử chung.
- Chia cả tử và mẫu cho nhân tử chung.
Giải thích thêm:
Một số em có thể chọn luôn D do chưa rút gọn hoặc rút gọn sai \(P\) .