Câu hỏi:
2 năm trước

Cho hình chóp tam giác đều $S.ABC$ có cạnh đáy bằng $a$ và mặt bên hợp với đáy một góc \({60^0}\). Thể tích khối chóp $S.ABC$ là:

Trả lời bởi giáo viên

Đáp án đúng: c

Bước 1:

Gọi $G$ là trọng tâm tam giác $ABC$. Vì chóp $S.ABC$ đều nên \(SG \bot \left( {ABC} \right)\)

Gọi $D$ là trung điểm của $BC$ ta có: \(AD \bot BC\)

Ta có: \(\left. \begin{array}{l}BC \bot AD\\BC \bot SG\,\,\left( {SG \bot \left( {ABC} \right)} \right)\end{array} \right\} \Rightarrow BC \bot \left( {SAD} \right) \Rightarrow BC \bot SD\)

\(\left. \begin{array}{l}\left( {SBC} \right) \cap \left( {ABC} \right) = BC\\\left( {SBC} \right) \supset SD \bot BC\\\left( {ABC} \right) \supset AD \bot BC\end{array} \right\} \Rightarrow \widehat {\left( {\left( {SBC} \right);\left( {ABC} \right)} \right)} = \widehat {\left( {SD;AD} \right)} = \widehat {SDA} = {60^0}\)

Bước 2:

Vì tam giác $ABC$ đều cạnh $a$ nên \(AD = \dfrac{{a\sqrt 3 }}{2} \Rightarrow DG = \dfrac{1}{3}AD = \dfrac{{a\sqrt 3 }}{6}\)

\(SG \bot \left( {ABC} \right) \Rightarrow SG \bot AD \Rightarrow \Delta SGD\) vuông tại $G$

\( \Rightarrow SG = GD.\tan 60 = \dfrac{{a\sqrt 3 }}{6}.\sqrt 3  = \dfrac{a}{2}\)

Bước 3:

Tam giác $ABC$ đều \( \Rightarrow {S_{\Delta ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)

Bước 4:

\( \Rightarrow {V_{S.ABC}} = \dfrac{1}{3}SG.{S_{\Delta ABC}} = \dfrac{1}{3}.\dfrac{a}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{{24}}\).

Hướng dẫn giải:

Bước 1: Xác định góc giữa mặt bên và mặt đáy: là góc giữa hai đường thẳng nằm trong hai mặt phẳng đó và cùng vuông góc với giao tuyến.

Bước 2: Tính chiều cao \(SG\)

Bước 3: Tính diện tích đáy \({S_{ABC}}\).

Bước 4: Tính thể tích theo công thức \(V = \dfrac{1}{3}Sh\).

Câu hỏi khác