Câu hỏi:
2 năm trước

Cho hàm số \(y={{x}^{3}}+{{x}^{2}}-5x+1\). Viết phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x = 2.

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có: \(y'=3{{x}^{2}}+2x-5\Rightarrow y'\left( 2 \right)=11;\,\,y\left( 2 \right)=3\)

\(\Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm có hoành độ x = 2 là: \(y=11\left( x-2 \right)+3=11x-19\).

Hướng dẫn giải:

Phương trình tiếp tuyến của đồ thị hàm số \(y=f\left( x \right)\) tại điểm có hoành độ \(x={{x}_{0}}\) có phương trình \(y=f'\left( {{x}_{0}} \right)\left( x-{{x}_{0}} \right)+{{y}_{0}}\).

Câu hỏi khác