Câu hỏi:
2 năm trước

Cho hai đường thẳng $d:y = \left( {m + 2} \right)x - m$ và $d':y =  - 2x - 2m + 1$ là đồ thị của hai hàm số bậc nhất. Với giá trị nào của $m$ thì $d$//$d'$

Trả lời bởi giáo viên

Đáp án đúng: b

Ta thấy $d:y = \left( {m + 2} \right)x - m$ có $a = m + 2 \ne 0 \Leftrightarrow m \ne  - 2$ và $d':y =  - 2x - 2m + 1$ có $a' =  - 2 \ne 0$ .

Để \(d\)//$d'$\( \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.\)$ \Leftrightarrow \left\{ \begin{array}{l}m + 2 =  - 2\\ - m \ne  - 2m + 1\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}m =  - 4\\m \ne 1\end{array} \right. \Leftrightarrow m =  - 4$ (TM) .

Hướng dẫn giải:

Sử dụng vị trí tương đối giữa hai đường thẳng

Cho hai đường thẳng $d:y = ax + b\,\,\left( {a \ne 0} \right)$ và $d':y = a'x + b'\,\,\left( {a' \ne 0} \right)$.

+) $d{\rm{//}}d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b \ne b'\end{array} \right.$

+) \(d\) cắt $d'$\( \Leftrightarrow a \ne a'\).

+) \(d \equiv d' \Leftrightarrow \left\{ \begin{array}{l}a = a'\\b = b'\end{array} \right.\).

+) \(d \bot d' \Leftrightarrow a.a' =  - 1\).

Câu hỏi khác