Câu hỏi:
2 năm trước

Cho \(E = \dfrac{{x{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}}:\left[ {\left( {\dfrac{{1 - {x^3}}}{{1 - x}} + x} \right).\left( {\dfrac{{1 + {x^3}}}{{1 + x}} - x} \right)} \right]\) . Chọn câu đúng.

Trả lời bởi giáo viên

Đáp án đúng: b

ĐK: \(x \pm 1\)

Ta có \(E = \dfrac{{x{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}}:\left[ {\left( {\dfrac{{1 - {x^3}}}{{1 - x}} + x} \right).\left( {\dfrac{{1 + {x^3}}}{{1 + x}} - x} \right)} \right]\)

\( = \dfrac{{x{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}}:\left[ {\left( {\dfrac{{\left( {1 - x} \right)\left( {1 + x + {x^2}} \right)}}{{1 - x}} + x} \right).\left( {\dfrac{{\left( {1 + x} \right)\left( {1 - x + {x^2}} \right)}}{{1 + x}} - x} \right)} \right]\)

\( = \dfrac{{x{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}}:\left[ {\left( {1 + 2x + {x^2}} \right).\left( {1 - 2x + {x^2}} \right)} \right]\)

\( = \dfrac{{x{{\left( {1 - x} \right)}^2}}}{{1 + {x^2}}}:\left[ {{{\left( {1 + x} \right)}^2}.{{\left( {1 - x} \right)}^2}} \right]\) \( = \dfrac{x}{{\left( {1 + {x^2}} \right){{\left( {1 + x} \right)}^2}}}\) .

Suy ra \(E = \dfrac{x}{{\left( {1 + {x^2}} \right){{\left( {1 +x} \right)}^2}}}\)

Ta thấy với \(x \pm 1\) thì \(1 + {x^2} \ge 1 > 0\) và \({\left( {1 + x} \right)^2} > 0\) nên \(\left( {1 + {x^2}} \right){\left( {1 + x} \right)^2} > 0\) .

Suy ra \(E = \dfrac{x}{{\left( {1 + {x^2}} \right){{\left( {1 + x} \right)}^2}}} > 0 \Rightarrow x > 0\) nên B đúng, A, C sai.

\(E = \dfrac{x}{{\left( {1 + {x^2}} \right){{\left( {1 + x} \right)}^2}}} < 0 \Rightarrow x < 0\) nên D sai.

Hướng dẫn giải:

Bước 1: Ta sử dụng các quy tắc cộng, trừ, nhân, chia các phân thức và các hằng đẳng thức để rút gọn biểu thức.

Bước 2: Đánh giá \(E\) để kết luận.

Câu hỏi khác