Cho đường tròn $\left( O \right)$ đường kính $AB = $ \(4\sqrt 3 \) $cm$ .
Điểm \(C \in (O)\) sao cho \(\widehat {ABC} = {30^0}\). Tính diện tích hình viên phân$AC$ . (Hình viên phân là phần hình tròn giới hạn bởi một cung tròn và dây căng cung ấy).
Trả lời bởi giáo viên
Xét đường tròn $(O)$ có:
\(\widehat {ABC}\) và \(\widehat {AOC}\) là góc nội tiếp và góc ở tâm cùng chắn cung$AC$ \( \Rightarrow \widehat {AOC} = 2.\widehat {ABC} = {2.30^0} = {60^0}\)\( \Rightarrow {S_{qAOC}} = \dfrac{{\pi {R^2}.60}}{{360}} = \dfrac{{\pi {R^2}}}{6}\)
Xét \(\Delta AOC\) có \(\widehat {AOC} = {60^\circ }\) và $OA=OC=R$ nên tam giác $AOC$ đều cạnh bằng $R$ .
Gọi $CH$ là đường cao của tam giác $AOC$ , ta có:
\(CH = CO.\sin {60^0} = \dfrac{{\sqrt 3 }}{2}.R \Rightarrow {S_{AOC}} = \dfrac{1}{2}CH.OA = \dfrac{1}{2}.\dfrac{{\sqrt 3 }}{2}.R.R = \dfrac{{\sqrt 3 }}{4}.{R^2}.\)
Diện tích hình viên phân $AC$ là:
\({S_{qAOC}} - {S_{AOC}} = \dfrac{{\pi {R^2}}}{6} - \dfrac{{\sqrt 3 }}{4}.{R^2} = \left( {\dfrac{\pi }{6} - \dfrac{{\sqrt 3 }}{4}} \right).{R^2} \)
\(= \left( {\dfrac{{2\pi - 3\sqrt 3 }}{{12}}} \right).{\left( {2\sqrt 3 } \right)^2} \)
\(= 2\pi - 3\sqrt 3 \, cm^2.\)
Hướng dẫn giải:
Áp dụng công thức tính diện tích hình viên phân.
\({S_{vp\,AC}} = {S_{qAOC}} - {S_\Delta }_{AOC}\)