Cho đoạn mạch \(AB\) gồm cuộn dây thuần có điện trở thuần \(100\Omega \) và độ tự cảm \(\dfrac{1}{\pi }H\) mắc nối tiếp với tụ điện có điện dung \(\dfrac{{{{10}^{ - 4}}}}{{2\pi }}F\) . Đặt vào hai đầu đoạn mạch \(AB\) một điện áp xoay chiều \({u_{AB}} = 200\cos 100\pi t(V)\) . Khi điện áp tức thời giữa hai đầu đoạn mạch \(AB\) là \(100\sqrt 3 V\) và đang giảm thì điện áp tức thới giữa hai đầu cuộn dây là:
Trả lời bởi giáo viên
Tổng trở của mạch là \(Z = \sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} {\rm{}} = \sqrt {{{100}^2} + \left( {100\pi .\frac{1}{\pi } - \frac{1}{{\frac{{{{10}^{ - 4}}.100\pi }}{{2\pi }}}}} \right)} {\rm{}} = 100\sqrt 2 \Omega {\rm{}}\)
Độ lệch pha giữa u và i được xác định bởi biểu thức: \(\tan \varphi {\rm{}} = \frac{{{Z_l} - {Z_C}}}{R} = \frac{{100 - 200}}{{100}} = {\rm{}} - 1 = {\rm{}} > \varphi {\rm{}} = {\rm{}} - \frac{\pi }{4}\)
Biểu thức cường độ dòng điện \(i = \sqrt 2 \cos \left( {100\pi t - \frac{\pi }{4}} \right)A\)
Độ lệch pha giữa ud và i được xác định bởi biểu thức: \(\tan {\varphi _d} = \frac{{{Z_L}}}{R} = \frac{{100}}{{100}} = 1 = {\rm{}} > {\varphi _d} = \frac{\pi }{4}\)
Biểu thức điện áp hai đầu cuộn dây là \({u_d} = \sqrt {{R^2} + Z_L^2} .{I_0}\cos \left( {100\pi t + \frac{\pi }{2}} \right) = 200\cos (100\pi t + \frac{\pi }{2})\)
Tại thời điểm t: \({u_{AB}} = 100\sqrt 3 = 200\cos 100\pi t = > t = \frac{1}{{600}}s{\rm{}}\)
\( = > {u_d} = 200\cos \left( {100\pi t + \frac{\pi }{2}} \right) = 200\cos \left( {100\pi \frac{1}{{600}} + \frac{\pi }{2}} \right) = - 100V\)
Ta có \(t = \frac{1}{{600}}s \Leftrightarrow \frac{T}{{12}} \Leftrightarrow \frac{\pi }{6}\) biểu diễn trên đường tròn lượng giác ta thấy điện áp ở hai đầu cuộn dây đang giảm:
Hướng dẫn giải:
+ Sử dụng biểu thức tính tổng trở: \(Z = \sqrt {{R^2} + {{\left( {{Z_L} - {Z_C}} \right)}^2}} \)
+ Sử dụng biểu thức tính độ lệch pha giữa điện áp và cường độ dòng điện: \(\tan \varphi = \frac{{{Z_L} - {Z_C}}}{R}\)
+ Sử dụng biểu thức định luật Ôm, viết phương trình điện áp