Cho \(\Delta ABC\) có điểm $O$ là một điểm bất kì nằm trong tam giác. So sánh \(OA + OC\) và \(AB + BC\).
Trả lời bởi giáo viên
Gọi giao điểm của $AO$ và $BC$ là $D.$ Do $O$ nằm trong \(\Delta ABC\) nên $D$ nằm giữa $B$ và $C$\( \Rightarrow BC = BD + DC\left( * \right)\)
Xét \(\Delta ABD\) có: \(AD < AB + BD\) (bất đẳng thức tam giác)
\( \Rightarrow OA + OD < AB + BD\left( 1 \right)\)
Xét \(\Delta OCD\) có: \(OC < OD + DC\left( 2 \right)\) (bất đẳng thức tam giác)
Cộng vế với vế của \(\left( 1 \right)\) và \(\left( 2 \right)\) ta được:
\(OA + OD + OC < AB + BD + OD + DC\) \( \Rightarrow OA + OC < AB + BD + DC\left( {**} \right)\)
Từ \(\left( * \right)\) và \(\left( {**} \right)\) ta có: \(OA + OC < AB + BC.\)
Hướng dẫn giải:
- Kẻ thêm hình: Gọi giao điểm của $AO$ và $BC$ là $D.$
- Áp dụng bất đẳng thức tam giác: Trong một tam giác, tổng độ dài hai cạnh bất kì lớn hơn độ dài cạnh còn lại.