Cho \(abc \ne 0;\,a + b = c.\) Tính giá trị của biểu thức \(B = \dfrac{{\left( {{a^2} + {b^2} - {c^2}} \right)\left( {{b^2} + {c^2} - {a^2}} \right)\left( {{c^2} + {a^2} - {b^2}} \right)}}{{8{a^2}{b^2}{c^2}}}\).
Trả lời bởi giáo viên
Ta có: \(a + b = c \Leftrightarrow {\left( {a + b} \right)^2} = {c^2} \Leftrightarrow {a^2} + 2ab + {b^2} = {c^2}\)\( \Leftrightarrow {a^2} + {b^2} - {c^2} = - 2ab\)
\(a + b = c \Leftrightarrow a - c = - b \Leftrightarrow {\left( {a - c} \right)^2} = {\left( { - b} \right)^2}\) \( \Leftrightarrow {a^2} - 2ac + {c^2} = {b^2} \Leftrightarrow {a^2} + {c^2} - {b^2} = 2ac\)
\(a + b = c \Leftrightarrow c - b = a \Leftrightarrow {\left( {c - b} \right)^2} = {a^2}\) \( \Leftrightarrow {c^2} - 2bc + {b^2} = {a^2} \Leftrightarrow {b^2} + {c^2} - {a^2} = 2bc\)
Từ đó \(B = \dfrac{{\left( {{a^2} + {b^2} - {c^2}} \right)\left( {{b^2} + {c^2} - {a^2}} \right)\left( {{c^2} + {a^2} - {b^2}} \right)}}{{8{a^2}{b^2}{c^2}}}\)\( = \dfrac{{ - 2ab.2bc.2ac}}{{8{a^2}{b^2}{c^2}}} = \dfrac{{ - 8{a^2}{b^2}{c^2}}}{{8{a^2}{b^2}{c^2}}} = - 1\).
Hướng dẫn giải:
Rút gọn \(B\) bằng cách sử dụng giả thiết để biến đổi tử thức sao cho xuất hiện nhân tử \({a^2}{b^2}{c^2}\).
Sử dụng hằng đẳng thức \({\left( {x \pm y} \right)^2} = {x^2} \pm 2xy + {y^2}\).