Cho \(a,b,c,d\) thỏa mãn \(a + b + c + d = 0;ab + ac + bc = 1\). Rút gọn biểu thức \(P = \dfrac{{3\left( {ab - cd} \right)\left( {bc - ad} \right)\left( {ca - bd} \right)}}{{\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)}}\).
Trả lời bởi giáo viên
Ta có: \(a + b + c + d = 0 \Leftrightarrow a + b + c = - d\)
Khi đó \(ab - cd = ab + c\left( {a + b + c} \right) \)\(= ab + ac + bc + {c^2} = {c^2} + 1\) (vì \(ab + bc + ca = 1\))
Tương tự ta có \(bc - ad = bc + a\left( {a + b + c} \right) \)\(= {a^2} + bc + ab + ac = {a^2} + 1\)
\(ca - bd = ca + b\left( {a + b + c} \right) \)\(= {b^2} + ac + ab + bc = {b^2} + 1\)
Từ đó \(P = \dfrac{{3\left( {ab - cd} \right)\left( {bc - ad} \right)\left( {ca - bd} \right)}}{{\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)}}\)\( = \dfrac{{3\left( {{c^2} + 1} \right)\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)}}{{\left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\left( {{c^2} + 1} \right)}} = 3\)
Vậy \(P = 3.\)
Hướng dẫn giải:
Rút gọn \(P\) bằng cách sử dụng giả thiết để biến đổi tử thức sao cho xuất hiện nhân tử \(\left( {{a^2} + 1} \right),\left( {{b^2} + 1} \right),\left( {{c^2} + 1} \right)\).
Sử dụng phương pháp nhóm hạng tử để phân tích tử thức thành nhân tử.