Câu hỏi:
2 năm trước

Cho \(2a = 3b,5b = 7c\) và \(3a + 5c - 7b = 30\). Khi đó \(a - b + c\) bằng

Trả lời bởi giáo viên

Đáp án đúng: a

Ta có \(2a = 3b \Rightarrow \dfrac{a}{3} = \dfrac{b}{2} \Rightarrow \dfrac{a}{{21}} = \dfrac{b}{{14}}\,\left( 1 \right)\)  (nhân cả hai vế với \(\dfrac{1}{7}\))

Và \(5b = 7c \Rightarrow \dfrac{b}{7} = \dfrac{c}{5}\) \( \Rightarrow \dfrac{b}{{14}} = \dfrac{c}{{10}}\,\left( 2 \right)\)  (nhân cả hai vế với \(\dfrac{1}{2}\))

Từ (1) và (2) ta có \(\dfrac{a}{{21}} = \dfrac{b}{{14}} = \dfrac{c}{{10}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\dfrac{a}{{21}} = \dfrac{b}{{14}} = \dfrac{c}{{10}}\)\( = \dfrac{{3a - 7b + 5c}}{{3.21 - 7.14 + 5.10}} = \dfrac{{30}}{{15}} = 2\)

Do đó \(\dfrac{a}{{21}} = 2 \Rightarrow a = 42\); $\dfrac{b}{{14}} = 2 \Rightarrow b = 28$ và \(\dfrac{c}{{10}} = 2 \Rightarrow c = 20\)

Khi đó \(a - b + c = 42 - 28 + 20 = 34.\)

Hướng dẫn giải:

+ Sử dụng tính chất tỉ lệ thức để biến đổi đưa về \(\dfrac{a}{{21}} = \dfrac{b}{{14}} = \dfrac{c}{{10}}\)

+ Áp dụng tính chất của dãy tỉ số bằng nhau $\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{ma + nc}}{{mb + nd}} = \dfrac{{ma - nc}}{{mb - nd}}$ để giải bài toán.

Câu hỏi khác