Câu hỏi:
2 năm trước
Cho \(\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{a};\,a + b + c \ne 0\) và \(a = 2018\). Tính \(a+b+c\).
Trả lời bởi giáo viên
Đáp án đúng: d
Áp dụng tính chất dãy tỉ số bằng nhau ta được
\(\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{a} = \dfrac{{a + b + c}}{{b + c + a}} = 1\)
Suy ra \(a = b;b = c;c = a \Rightarrow b = c = a = 2018\)
Vậy \(a + b + c = 2018.3 = 6054.\)
Hướng dẫn giải:
Áp dụng tính chất dãy tỉ số bằng nhau: \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c + e}}{{b + d + f}}\)