Cặp số \(\left( {x;y} \right)\) nào dưới đây là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}3x - 5y = - 8\\4x + 3y = - 1\end{array} \right.\):
Trả lời bởi giáo viên
\(\left\{ \begin{array}{l}3x - 5y = - 8\\4x + 3y = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}12x - 20y = - 32\\12x + 9y = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}12x - 20y - \left( {12x + 9y} \right) = - 32 - \left( { - 3} \right)\\12x + 9y = - 3\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 29y = - 29\\12x + 9y = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\12x + 9.1 = - 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\12x = - 12\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 1\\x = - 1\end{array} \right.\)
Vậy hệ phương trình có nghiệm \(\left( {x;y} \right) = \left( { - 1;1} \right)\)
Hướng dẫn giải:
Giải hệ phương trình bằng phương pháp thế hoặc cộng đại số
Với phương pháp cộng đại số:
+ Nhân hai vế của phương trình trên với \(4\) và nhân hai vế của phương trình dưới với \(3\) rồi trừ vế với vế của hai phương trình thu được.
+ Giải phương trình mới ta tìm được \(y\), thay vào phương trình còn lại ta tìm được \(x.\)