Biết rằng hai đường cong \(y={{x}^{4}}-6{{x}^{3}}+15{{x}^{2}}-20x+5\) và \(y={{x}^{3}}-2{{x}^{2}}-3x-1\) tiếp xúc nhau tại một điểm duy nhất. Tìm tọa độ điểm đó.
Trả lời bởi giáo viên
Phương trình hoành độ giao điểm của hai đồ thị hàm số đã cho là:
\(\begin{array}{l}
\;\;\;\;{x^4} - 6{x^3} + 15{x^2} - 20x + 5 = {x^3} - 2{x^2} - 3x - 1\\
\Leftrightarrow {x^4} - 7{x^3} + 17{x^2} - 17x + 6 = 0\\
\Leftrightarrow \left( {x - 1} \right)\left( {{x^3} - 6{x^2} + 11x - 6} \right) = 0\\
\Leftrightarrow {\left( {x - 1} \right)^2}\left( {x - 3} \right)\left( {x - 2} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x - 1 = 0\\
x - 3 = 0\\
x - 2 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 1 \Rightarrow y = - 5\\
x = 3 \Rightarrow y = - 1\\
x = 2 \Rightarrow y = - 7
\end{array} \right..
\end{array}\)
Khi đó ta thấy đáp án A, B, C đều có khả năng đúng.
Ta có: \(f'\left( x \right)=4{{x}^{3}}-18x+30x-20;\ \ g'\left( x \right)=3{{x}^{2}}-4x-3.\)
\(\begin{array}{l}
\Rightarrow f'\left( x \right) = g'\left( x \right)\\
\Leftrightarrow 4{x^3} - 18{x^2} + 30x - 20 = 3{x^2} - 4x - 3\\
\Leftrightarrow 4{x^3} - 21{x^2} + 34x - 17 = 0\\
\Leftrightarrow \left( {x - 1} \right)\left( {4{x^2} - 17x + 17} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 1\\
x = \frac{{17 + \sqrt {17} }}{8}\\
x = \frac{{17 - \sqrt {17} }}{8}
\end{array} \right..
\end{array}\)
Kết hợp nghiệm của hai hệ phương trình ta thấy nghiệm chung duy nhất là \(x=1\Rightarrow \left( 1;-5 \right)\) là điểm tiếp xúc.
Hướng dẫn giải:
Điểm \(A\left( {{x}_{0}};\ {{y}_{0}} \right)\) là điểm tiếp xúc của hai đồ thị hàm số \(y=f\left( x \right)\) và \(y=g\left( x \right)\Leftrightarrow \left\{ \begin{align} & f\left( x \right)=g\left( x \right) \\ & f'\left( x \right)=g'\left( x \right) \\\end{align} \right..\)