Bằng cách tìm giao điểm của hai đường thẳng $d: - 2x + y = 3$ và $d':x + y = 5$ ta tìm được nghiệm của hệ phương trình $\left\{ \begin{array}{l} - 2x + y = 3\\x + y = 5\end{array} \right.$ là $\left( {{x_0};{y_0}} \right)$. Tính ${y_0} - {x_0}$.
Trả lời bởi giáo viên
Ta có $d: - 2x + y = 3$$ \Leftrightarrow y = 2x + 3$ và $d':x + y = 5$$ \Leftrightarrow y = 5 - x$
Xét phương trình hoành độ giao điểm của $d$ và $d'$: $2x + 3 = 5 - x \Leftrightarrow x = \dfrac{2}{3}$$ \Rightarrow y = 5 - x = 5 - \dfrac{2}{3} = \dfrac{{13}}{3}$
Vậy tọa độ giao điểm của $d$ và $d'$ là $\left( {\dfrac{2}{3};\dfrac{{13}}{3}} \right)$
Suy ra nghiệm của hệ phương trình $\left\{ \begin{array}{l} - 2x + y = 3\\x + y = 5\end{array} \right.$ là $\left( {\dfrac{2}{3};\dfrac{{13}}{3}} \right)$
Từ đó ${y_0} - {x_0} = \dfrac{{13}}{3} - \dfrac{2}{3} = \dfrac{{11}}{3}$.
Hướng dẫn giải:
Bước 1: Tìm giao điểm của hai đường thẳng $d$ và $d'$
Bước 2: Tọa độ giao điểm của $d$ và $d'$ chính là nghiệm của hệ phương trình. Từ đó tính giá trị biểu thức cần tìm.