I. Ước chung
1. Định nghĩa
+ Ước chung của hai hay nhiều số là ước của tất cả các số đó.
2. Kí hiệu
+ ƯC\(\left( {a;b} \right)\) là tập hợp các ước chung của \(a\) và \(b\).
3. Cách tìm ước chung
a) Tìm ước chung của hai số a và b
Bước 1: Viết tập hợp các ước của a và của b: Ư(a), Ư(b)
Bước 2: Tìm những phần tử chung của Ư(a) và Ư(b).
Ví dụ: Ư\(\left( 8 \right) = \left\{ {1;2;4;8} \right\}\); Ư\(\left( {12} \right) = \left\{ {1;2;3;4;6;12} \right\}\)
Nên ƯC\(\left( {8;12} \right) = \left\{ {1;2;4} \right\}\)
b) Tìm ước chung của ba số a, b và c
Bước 1: Viết tập hợp các ước của a, của b và của c: Ư(a), Ư(b), Ư(c)
Bước 2: Tìm những phần tử chung của Ư(a), Ư(b) và Ư(c).
Nhận xét:
+) \(x \in \)ƯC\(\left( {a;b} \right)\) nếu \(a \vdots x\) và \(b \vdots x.\)
+) \(x \in \)ƯC\(\left( {a;b;c} \right)\) nếu \(a \vdots x\) ; \(b \vdots x\) và \(c \vdots x.\)
Chú ý:
+ Giao của hai tập hợp là một tập hợp gồm các phần tử chung của hai tập hợp đó.
+ Kí hiệu: Giao của tập hợp A và tập hợp B là \(A \cap B\)
Ví dụ: Ư\(\left( 8 \right) \cap \) Ư\(\left( {12} \right) = \)ƯC\(\left( {8;12} \right)\).
II. Ước chung lớn nhất
1. Định nghĩa
Ước chung lớn nhất của hai hay nhiều số là số lớn nhất trong tập hợp các ước chung của các số đó.
Nếu ước chung lớn nhất của hai số a và b bằng 1 thì ta nói, a và b là hai số nguyên tố cùng nhau.
2. Kí hiệu
+) ƯCLN\(\left( {a,b} \right)\) là ước chung lớn nhất của \(a\) và \(b\).
+) ƯC\(\left( {a;b} \right)\) là tập hợp còn ƯCLN\(\left( {a,b} \right)\) là một số.
3. Các cách tìm ước chung lớn nhất bằng định nghĩa
a) Cách tìm ƯCLN trong trường hợp đặc biệt
+) Trong các số cần tìm ƯCLN có số nhỏ nhất là ước của những số còn lại thì số đó là ƯCLN cần tìm:
Nếu \(a \vdots b\) thì ƯCLN \(\left( {a;b} \right) = b\)
+) Số 1 chỉ có 1 ước là 1 nên với mọi số tự nhiên a và b ta có:
ƯCLN\(\left( {a,1} \right)\) =1 và ƯCLN\(\left( {a,b,1} \right)\)=1
b) Cách tìm ƯCLN của hai số a và b bằng định nghĩa
Bước 1. Tìm tập hợp các ước chung của hai số a và b: ƯC\(\left( {a;b} \right)\)
Bước 2. Tìm số lớn nhất trong các ước chung vừa tìm được: ƯCLN\(\left( {a,b} \right)\)
Ví dụ : Tìm ƯCLN (18 ; 30)
Ta có :
Ư(18)=\(\left\{ {1;2;3;6;9;18} \right\}\)
Ư(30)=\(\left\{ {1;2;3;5;6;10;15;30} \right\}\)
ƯC(18;30)={1;2;3;6}
Số lớn nhất trong các số 1, 2, 3, 6 là số 6.
Vậy ƯCLN (18 ; 30)=6
III. Tìm ước chung lớn nhất bằng cách phân tích các số tự nhiên ra thừa số nguyên tố
1. Cách tìm ước chung lớn nhất –ƯCLN
Muốn tìm ƯCLN của của hai hay nhiều số lớn hơn 1, ta thực hiện ba bước sau :
Bước 1 : Phân tích mỗi số ra thừa số nguyên tố.
Bước 2 : Chọn ra các thừa số nguyên tố chung.
Bước 3 : Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
Ví dụ : Tìm ƯCLN (18 ; 30)
Ta có :
Bước 1 : phân tích các số ra thừa số nguyên tố.
18 = 2.32
30 = 2.3.5
Bước 2 : Thừa số nguyên tố chung là \(2\) và \(3\)
Bước 3 : ƯCLN\(\left( {18;30} \right) = 2.3 = 6\)
Chú ý:
+ Nếu các số đã cho không có thừa số nguyên tố chung thì ƯCLN của chúng bằng 1.
+ Hai hay nhiều số có ƯCLN bằng 1 gọi là các số nguyên tố cùng nhau.
2. Cách tìm ƯC thông qua ƯCLN
Để tìm ước chung của các số đã cho, ta có tể tìm các ước của ƯCLN của các số đó.
Ví dụ: ƯCLN\(\left( {18;30} \right) = 2.3 = 6\)
Từ đó ƯC\(\left( {18;30} \right) = \)Ư\(\left( 6 \right) = \left\{ {1;2;3;6} \right\}\)
IV. Ứng dụng trong rút gọn về số tối giản
Rút gọn phân số: Chia cả tử và mẫu cho ước chung khác 1 (nếu có) của chúng.
Phân số tối giản: \(\dfrac{a}{b}\) là phân số tối giản nếu ƯCLN\(\left( {a,b} \right) = 1\)
Đưa một phân số chưa tối giản về phân số tối giản: Chia cả tử và mẫu cho ƯCLN\(\left( {a,b} \right)\).
Ví dụ: Phân số \(\dfrac{9}{{24}}\) tối giản chưa? Nếu chưa, hãy rút gọn về phân số tối giản.
Ta có: ƯCLN\(\left( {9,24} \right) = 3\) khác 1 nên \(\dfrac{9}{{24}}\) chưa tối giản.
Ta có: \(\dfrac{9}{{24}} = \dfrac{{9:3}}{{24:3}} = \dfrac{3}{8}\). Ta được \(\dfrac{3}{8}\) là phân số tối giản.