I. Thực hiện phép tính nhân, chia hai số nguyên
Khi thực hiện phép tính ta áp dụng các quy tắc sau:
- Quy tắc nhân hai số nguyên
Với \(m,n \in {\mathbb{N}^*}\), ta có:
\(m\left( { - n} \right) = \left( { - n} \right)m = - (m.m)\)
\(\left( { - m} \right)\left( { - n} \right) = \left( { - n} \right)\left( { - m} \right) = mn\)
- Quy tắc dấu của thương:
\(\begin{array}{l}\left( + \right):\left( + \right) = \left( + \right)\\\left( - \right):\left( - \right) = \left( + \right)\\\left( + \right):\left( - \right) = \left( - \right)\\\left( - \right):\left( + \right) = \left( - \right)\end{array}\)
Chú ý:
+ Nếu đổi dấu một thừa số thì tích $ab$ đổi dấu.
+ Nếu đổi dấu hai thừa số thì tích $ab$ không thay đổi.
Chú ý trên vẫn đúng với phép chia.
II. Bài toán đưa về thực hiện phép nhân (chia) hai số nguyên
Bước 1: Căn cứ vào đề bài, suy luận để đưa về phép nhân (chia) hai số nguyên.
Bước 2: Thực hiện phép nhân (chia) hai số nguyên.
Bước 3: Kết luận.
III. Tìm các số nguyên x,y sao cho x.y = a (a thuộc Z)
Phương pháp
- Phân tích số nguyên $a$ thành tích hai số nguyên bằng tất cả các cách có thể.
- Từ đó tìm được $x,y.$
Ví dụ:
Tìm số nguyên \(x,y\) thỏa mãn \(\left( {x - 1} \right)\left( {y + 1} \right) = 3\)
Ta có: \(3 = ( - 1).( - 3) = 1.3\) nên ta có 4 trường hợp sau:
TH1: \(x - 1 = - 1\) và \(y + 1 = - 3\) suy ra \(x = 0\) và \(y = - 4\)
TH2: \(x - 1 = - 3\) và \(y + 1 = - 1\) suy ra \(x = - 2\) và \(y = - 2\)
TH3: \(x - 1 = 1\) và \(y + 1 = 3\) suy ra \(x = 2\) và \(y = 2\)
TH4: \(x - 1 = 3\) và \(y + 1 = 1\) suy ra \(x = 4\) và \(y = 0\)
Vậy \(\left( {x;y} \right) \in \left\{ {\left( {0;\,\, - 4} \right);\,\left( { - 2;\, - 2} \right);\left( {2;\,2} \right);\left( {4;0} \right)} \right\}\).
IV. Bài toán tìm x và tìm số chưa biết trong đẳng thức dạng A.B = 0
- Bài toán tìm x:
+ Muốn tìm số hạng ta lấy tích chia cho số hạng còn lại.
+ Muốn tìm số chia ta lấy sô bị chia chia cho thương.
+ Muốn tìm số bị chia ta lấy thương nhân số chia.
- Dạng toán \(A.B=0\)
+ Nếu $A.B = 0$ thì $A = 0$ hoặc $B = 0.$
+ Nếu $A.B = 0$ mà $A$ (hoặc $B$ ) khác $0$ thì $B$ ( hoặc $A$ ) bằng $0.$
Ví dụ: Tìm \(x\) biết: \(\left( {x - 2} \right).\left( {x + 5} \right) = 0\)
\(\left( {x - 2} \right).\left( {x + 5} \right) = 0 \Rightarrow \)\(x - 2 = 0\) hoặc \(x + 5 = 0\)
Suy ra \(x = 2\) hoặc \(x = - 5\)
Vậy \(x \in \left\{ {2;\, - 5} \right\}\).