I. Tính chất 1: Nhân cả tử và mẫu của một phân số với một số khác 0
Nếu ta nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số mới bằng phân số đã cho.
$\dfrac{a}{b} = \dfrac{{a.m}}{{b.m}}$ với $m \in Z$ và $m \ne 0$ .
Ví dụ:
a) $\dfrac{2}{3} = \dfrac{{2.4}}{{3.4}} = \dfrac{8}{{12}}$
b) $\dfrac{{ - 5}}{7} = \dfrac{{ - 5.2}}{{7.2}} = \dfrac{{ - 10}}{{14}}$
II. Tính chất 2: Chia cả tử và mẫu của một phân số với một ước chung
Nếu ta chia cả tử và mẫu của một phân số cho cùng một ước chung của chúng ta được một phân số mới bằng phân số đã cho.
$\dfrac{a}{b} = \dfrac{{a:n}}{{b:n}}$ với $n \in $ƯC$\left( {a;b} \right)$.
Ví dụ:
a) $\dfrac{9}{{15}} = \dfrac{{9:3}}{{15:3}} = \dfrac{3}{5}$
b) $\dfrac{{ - 14}}{{ - 21}} = \dfrac{{ - 14:7}}{{ - 21:7}} = \dfrac{2}{3}$
III. Quy đồng mẫu nhiều phân số
Bước 1: Viết các phân số đã cho về phân số có mẫu dương. Tìm BCNN của các mẫu dương đó để làm mẫu chung
Bước 2: Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu)
Bước 3: Nhân tử và mẫu của mỗi phân số ở Bước 1 với thừa số phụ tương ứng.
Ví dụ:
Để quy đồng mẫu hai phân số $\dfrac{1}{6}$ và $\dfrac{3}{{ - 8}}$, ta làm như sau:
- Đưa về phân số có mẫu dương: $\dfrac{1}{6}$ và $\dfrac{{ - 3}}{8}$
- Tìm mẫu chung: $BC(6;\,8) = 24$
- Tìm thừa số phụ: $24:6 = 4;\,24:8 = 3$
- Ta có: $\dfrac{1}{6} = \dfrac{{1.4}}{{6.4}} = \dfrac{4}{{24}}$ và $\dfrac{3}{{ - 8}} = \dfrac{{ - 3}}{8} = \dfrac{{ - 3.3}}{{8.3}} = \dfrac{{ - 9}}{{24}}$.
IV. Rút gọn phân số
a) Khái niệm phân số tối giản:
Phân số tối giản là phân số mà tử và mẫu chỉ có ước chung là $1$ và $ - 1$
b) Cách rút gọn phân số
Bước 1: Tìm ƯCLN của tử và mẫu khi đã bỏ dấu “-” (nếu có)
Bước 2: Chia cả tử và mẫu cho ƯCLN vừa tìm được, ta có phân số tối giản.
Ví dụ:
Để rút gọn phân số $\dfrac{{ - 15}}{{24}}$ ta làm như sau:
- Tìm ƯCLN của mẫu: ƯCLN(15; 24)=3.
- Chia cả tử và mẫu cho ƯCLN: $\dfrac{{ - 15}}{{24}} = \dfrac{{ - 15:3}}{{24:3}} = \dfrac{{ - 5}}{8}$.
Ta được $\dfrac{{ - 5}}{8}$ là phân số tối giản.