Câu hỏi:
2 năm trước
Trong trường hợp hệ có nghiệm duy nhất \(\left( {x;y} \right)\) thì điểm \(M\left( {x;y} \right)\) luôn chạy trên đường thẳng nào dưới đây?
Trả lời bởi giáo viên
Đáp án đúng: c
Theo câu trước ta có hệ có nghiệm duy nhất khi và chỉ khi \(m \ne \pm 1\)
Khi đó \(\left\{ \begin{array}{l}x = \dfrac{{3m + 1}}{{m + 1}} = 3 - \dfrac{2}{{m + 1}}\\y = \dfrac{{m - 1}}{{m + 1}} = 1 - \dfrac{2}{{m + 1}}\end{array} \right.\)
Suy ra: $x - y = 3 - \dfrac{2}{{m + 1}} - \left( {1 - \dfrac{2}{{m + 1}}} \right) = 2$
Vậy điểm \(M\left( {x;y} \right)\) luôn chạy trên đường thẳng cố định có phương trình \(y = x - 2\).
Hướng dẫn giải:
+ Tìm \(m\) để hệ phương trình có nghiệm duy nhất (sử dụng kết quả câu trước )
+ Tìm \(x;y\) theo \(m\) và biến đổi để có hệ thức của \(x;y\) độc lập với \(m.\)