Câu hỏi:
2 năm trước

Trong mặt phẳng tọa độ $Oxy$. Cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) lần lượt có phương trình \(x - 2y + 1 = 0\) và \(x - 2y + 4 = 0\), điểm \(I\left( {2;1} \right)\). Phép vị tự tâm $I$ tỉ số $k$ biến đường thẳng \({\Delta _1}\) thành \({\Delta _2}\) khi đó giá trị của $k$ là :

Trả lời bởi giáo viên

Đáp án đúng: d

Lấy \(A\left( { - 1;0} \right) \in {\Delta _1}\), gọi \(A'\left( {x;y} \right)\) là ảnh của $A$ qua phép vị tự tâm $I$ tỉ số $k$ ta có : \(\overrightarrow {IA'}  = k\overrightarrow {IA} \)

\(\begin{array}{l} \Rightarrow \left( {x - 2;y - 1} \right) = k\left( { - 3; - 1} \right) \\\Leftrightarrow \left\{ \begin{array}{l}x - 2 =  - 3k\\y - 1 =  - k\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x =  - 3k + 2\\y =  - k + 1\end{array} \right.\\ \Rightarrow A'\left( { - 3k + 2; - k + 1} \right)\\{V_{\left( {I;k} \right)}}\left( {{\Delta _1}} \right) = {\Delta _2},\,\,{V_{\left( {I;k} \right)}}\left( A \right) = A' \Rightarrow A' \in {\Delta _2}\end{array}\)

Thay tọa độ điểm $A'$  vào phương trình đường thẳng \({\Delta _2}\) ta có:

\( - 3k + 2 - 2\left( { - k + 1} \right) + 4 = 0 \Leftrightarrow  - k + 4 = 0 \Leftrightarrow k = 4\)

Hướng dẫn giải:

Lấy điểm $A$ bất kì thuộc \({\Delta _1}\), tìm ảnh $A'$  của $A$ qua phép vị tự tâm $I$ tỉ số $k$.

Thay tọa độ điểm $A'$  vừa tìm được vào phương trình đường thẳng \({\Delta _2}\).

Câu hỏi khác