Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left( S \right):\,\,\,{x^2} + {y^2} + {z^2} - 2x - 4y - 4z = 0\). Mặt phẳng tiếp xúc với mặt cầu \(\left( S \right)\) tại \(A\left( {3;4;3} \right)\) có phương trình là:
Trả lời bởi giáo viên
Mặt cầu \(\left( S \right):\,\,\,{x^2} + {y^2} + {z^2} - 2x - 4y - 4z = 0\) có tâm \(I\left( {1;2;2} \right)\), bán kính \(R = \sqrt {{1^2} + {2^2} + {3^2} - 0} = \sqrt {14} \).
Gọi \(\left( P \right)\) là mặt phẳng tiếp xúc với mặt cầu \(\left( S \right)\) tại \(A\left( {3;4;3} \right)\), khi đó ta có \(IA \bot \left( P \right)\) nên \(\left( P \right)\) nhận \(\overrightarrow {IA} = \left( {2;2;1} \right)\) là 1 VTPT.
Vậy phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\left( {3;4;3} \right)\) và có 1 VTPT \(\overrightarrow {IA} = \left( {2;2;1} \right)\) là:
\(2\left( {x - 3} \right) + 2\left( {y - 4} \right) + 1\left( {z - 3} \right) = 0\) \( \Leftrightarrow 2x + 2y + z - 17 = 0\).
Hướng dẫn giải:
- Xác định tâm \(I\) và bán kính \(R\) của mặt cầu \(\left( S \right)\): Mặt cầu \(\left( S \right):\,\,\,{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\) có tâm \(I\left( {a;b;c} \right)\), bán kính \(R = \sqrt {{a^2} + {b^2} + {c^2} - d} \).
- Mặt phẳng \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right)\) tại \(A\) nhận \(\overrightarrow {IA} \) là 1 VTPT.
- Phương trình mặt phẳng đi qua \(A\left( {{x_0};{y_0};{z_0}} \right)\) và có 1 VTPT \(\overrightarrow n \left( {A;B;C} \right)\) là: \(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\)