Tính giá trị biểu thức $\sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} + \sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}}$
Trả lời bởi giáo viên
Ta có $\sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} = \left| {2 - \sqrt 3 } \right|$ mà $2 = \sqrt 4 > \sqrt 3 $ (vì $4 > 3$) nên $2 - \sqrt 3 > 0$. Từ đó $\sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} = \left| {2 - \sqrt 3 } \right| = 2 - \sqrt 3 $.
Ta có $\sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} = \left| {1 - \sqrt 3 } \right|$ mà $1 = \sqrt 1 < \sqrt 3 $ (vì $1 < 3$) nên $1 - \sqrt 3 < 0$. Từ đó
$\sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} = \left| {1 - \sqrt 3 } \right|$$ = \sqrt 3 - 1$.
Nên $\sqrt {{{\left( {2 - \sqrt 3 } \right)}^2}} + \sqrt {{{\left( {1 - \sqrt 3 } \right)}^2}} $$ = 2 - \sqrt 3 + \sqrt 3 - 1 = 1$.
Hướng dẫn giải:
-Sử dụng hằng đẳng thức $\sqrt {{A^2}} = \left| A \right|$
- So sánh hai căn bậc hai $\sqrt A > \sqrt B \Leftrightarrow A > B$ với $A,B$ không âm để phá dấu giá trị tuyệt đối.