Trả lời bởi giáo viên

Đáp án đúng: b

Đặt \({x^2} = t\,\,\left( {t \ge 0} \right).\) Khi đó ta có phương trình:

\(\begin{array}{l}{t^2} - 5t - 6 = 0 \Leftrightarrow \left( {t + 1} \right)\left( {t - 6} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}t + 1 = 0\\t - 6 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t =  - 1\,\,\left( {ktm} \right)\\t = 6\,\,\,\left( {tm} \right)\end{array} \right.\\ \Leftrightarrow {x^2} = 6 \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 6 \\x =  - \sqrt 6 \end{array} \right..\end{array}\)

Vậy tập nghiệm của phương trình là:\(S = \left\{ { - \sqrt 6 ;\,\,\sqrt 6 } \right\}.\)

Hướng dẫn giải:

Giải phương trình \(a{x^4} + b{x^2} + c = 0\,\,\,\left( {a \ne 0} \right)\) bằng cách đặt ẩn phụ: \(t = {x^2}\,\,\,\left( {t \ge 0} \right).\)

Khi đó ta có phương trình \(a{t^2} + bt + c = 0.\)

Giải phương trình bậc hai ẩn t sau đó tìm x.

Câu hỏi khác