Tìm \(m\) để phương trình sau có nghiệm
\(\sqrt x + \sqrt {9 - x} = \sqrt { - {x^2} + 9x + m} \)
Trả lời bởi giáo viên
ĐKXĐ: \(\left\{ \begin{array}{l}x \ge 0\\9 - x \ge 0\\ - {x^2} + 9x + m \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 \le x \le 9\\ - {x^2} + 9x + m \ge 0\end{array} \right.\).
Xét \( - {x^2} + 9x + m \ge 0 \Leftrightarrow - {x^2} + 9x \ge - m\).
Ta có \( - {x^2} + 9x = - \left( {{x^2} - 2.x.\dfrac{9}{2} + \dfrac{{81}}{4}} \right) + \dfrac{{81}}{4} = - {\left( {x - \dfrac{9}{2}} \right)^2} + \dfrac{{81}}{4} \le \dfrac{{81}}{4}\)
\( \Rightarrow - {x^2} + 9x \ge - m\) có nghiệm khi và chỉ khi \( - m \le \dfrac{{81}}{4} \Leftrightarrow m \ge - \dfrac{{81}}{4}\,\,\left( 1 \right)\).
Ta có:
\(\begin{array}{l}\,\,\,\,\,\,\sqrt x + \sqrt {9 - x} = \sqrt { - {x^2} + 9x + m} \\ \Rightarrow {\left( {\sqrt x + \sqrt {9 - x} } \right)^2} = - {x^2} + 9x + m\\ \Leftrightarrow x + 9 - x + 2\sqrt { - {x^2} + 9x} = - {x^2} + 9x + m\\ \Leftrightarrow 2\sqrt { - {x^2} + 9x} + 9 = - {x^2} + 9x + m\\ \Leftrightarrow \left( { - {x^2} + 9x} \right) - 2\sqrt { - {x^2} + 9x} + m - 9 = 0\,\,\,\left( * \right)\end{array}\)
Đặt \(t = \sqrt { - {x^2} + 9x} \) \( \Rightarrow 0 \le t \le \sqrt {\dfrac{{81}}{4}} \Rightarrow 0 \le t \le \dfrac{9}{2}\).
Khi đó phương trình (*) trở thành \({t^2} - 2t + m - 9 = 0\) có nghiệm \(t \in \left[ {0;\dfrac{9}{2}} \right]\).
\(\begin{array}{l} \Rightarrow \left\{ \begin{array}{l}\Delta ' \ge 0\\0 \le {t_1} + {t_2} \le 9\\{t_1}{t_2} \ge 0\\\left( {{t_1} - \dfrac{9}{2}} \right)\left( {{t_2} - \dfrac{9}{2}} \right) \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}1 - m + 9 \ge 0\\0 \le 2 \le 9\,\,\left( {luon\,\,dung} \right)\\m - 9 \ge 0\\m - 9 - \dfrac{9}{2}.2 + \dfrac{{81}}{4} \ge 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m \le 10\\m \ge 9\\m \ge - \dfrac{9}{4}\end{array} \right. \Leftrightarrow 9 \le m \le 10\end{array}\)
Kết hợp điều kiện (1) ta có \(m \in \left[ {9;10} \right]\).
Hướng dẫn giải:
- Tìm ĐKXĐ của phương trình.
- Bình phương hai vế, đặt ẩn phụ \(t = \sqrt { - {x^2} + 9x} \), tìm điều kiện của \(t\).
- Sử dụng định lí Vi-ét tìm điều kiện để phương trình có nghiệm \(t\) thỏa mãn điều kiện tìm được ở trên.