Câu hỏi:
2 năm trước

Tìm giá trị nhỏ nhất và giá trị lớn nhất của hàm số \(y = \dfrac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + 2\cos x + 3}}{{2 + \cos x}}\)

Trả lời bởi giáo viên

Đáp án đúng: b

Bước 1:

Ta có  \(\cos x + 2 > 0,\forall x \in \,R\) .

\(y = \dfrac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + 2\cos x + 3}}{{2 + \cos x}}\) \( \Leftrightarrow {\mathop{\rm s}\nolimits} {\rm{inx}} + 2\cos x + 3 = 2y + y\cos x\) \( \Leftrightarrow {\mathop{\rm s}\nolimits} {\rm{inx}} + \left( {2 - y} \right)\cos x = 2y-3\,\left( * \right)\)

Bước 2:

Ta có điều kiện có nghiệm của phương trình \(\left( * \right)\) là:

\({1^2} + {\left( {2 - y} \right)^2} \ge {\left( {2y-3} \right)^2}\) \( \Leftrightarrow 4{y^2} - 12y + 9 - {y^2} + 4y - 4 - 1 \le 0\) \( \Leftrightarrow 3{y^2} - 8y + 4 \le 0\) \( \Leftrightarrow \dfrac{2}{3} \le y \le 2\)

Hướng dẫn giải:

Bước 1: Biến đổi hàm số về dạng $a.\sin x+b.\cos x=c$

Bước 2: Sử dụng điều kiện có nghiệm của nó suy ra GTLN, GTNN của hàm số:

$a^2+b^2\ge c^2$

Câu hỏi khác