Câu hỏi:
2 năm trước

Rút gọn biểu thức sau \(\sqrt {{{\left( {5 - \sqrt {11} } \right)}^2}}  + \sqrt {{{\left( {3 - \sqrt {11} } \right)}^2}} \).

Trả lời bởi giáo viên

Đáp án đúng: c

Ta có: \(\sqrt {{{\left( {5 - \sqrt {11} } \right)}^2}}  + \sqrt {{{\left( {3 - \sqrt {11} } \right)}^2}}  = \left| {5 - \sqrt {11} } \right| + \left| {3 - \sqrt {11} } \right|\)

+) \(5 = \sqrt {25}  > \sqrt {11}  \Rightarrow 5 - \sqrt {11}  > 0 \Leftrightarrow \left| {5 - \sqrt {11} } \right| = 5 - \sqrt {11} \)

+)  \(3 = \sqrt 9  < \sqrt {11}  \Rightarrow 3 - \sqrt {11}  < 0 \Leftrightarrow \left| {3 - \sqrt {11} } \right| = \sqrt {11}  - 3\)

Nên \(\sqrt {{{\left( {5 - \sqrt {11} } \right)}^2}}  + \sqrt {{{\left( {\sqrt {11}  - 3} \right)}^2}}  = \left| {5 - \sqrt {11} } \right| + \left| {\sqrt {11}  - 3} \right|\)\( = 5 - \sqrt {11}  + \sqrt {11}  - 3 = 2\).

Hướng dẫn giải:

+ Sử dụng hằng đẳng thức \(\sqrt {{A^2}}  = \left| A \right|\)

+ So sánh hai căn bậc hai \(\sqrt A  > \sqrt B  \Leftrightarrow A > B\) với \(A,B\) không âm để phá dấu giá trị tuyệt đối.

Câu hỏi khác