Một người tham gia chương trình bảo hiểm An sinh xã hội của công ty Bảo Việt với thể lệ như sau: Cứ đến tháng $9$ hàng năm người đó đóng vào công ty là $12$ triệu đồng với lãi suất hàng năm không đổi là $6\% $ / năm. Hỏi sau đúng $18$ năm kể từ ngày đóng, người đó thu về được tất cả bao nhiêu tiền? Kết quả làm tròn đến hai chữ số phần thập phân.
Trả lời bởi giáo viên
Gọi số tiền đóng hàng năm là $A = 12$ (triệu đồng), lãi suất là $r = 6\% = 0,06$.
Sau \(1\) năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là \({A_1} = A\left( {1 + r} \right)\). (nhưng người đó không rút mà lại đóng thêm $A$ triệu đồng nữa, nên số tiền gốc để tính lãi năm sau là \({A_1} + A\)).
Sau \(2\) năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:
\({A_2} = \left( {{A_1} + A} \right)\left( {1 + r} \right) = \left[ {A\left( {1 + r} \right) + A} \right]\left( {1 + r} \right) = A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\)
Sau \(3\) năm, nếu người đó đi rút tiền thì sẽ nhận được số tiền là:
\({A_3} = \left( {{A_2} + A} \right)\left( {1 + r} \right) = \left[ {A{{\left( {1 + r} \right)}^2} + A\left( {1 + r} \right) + A} \right]\left( {1 + r} \right) = A{\left( {1 + r} \right)^3} + A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)\)
…
Sau \(18\) năm, người đó đi rút tiền thì sẽ nhận được số tiền là:
${A_{18}} = A{\left( {1 + r} \right)^{18}} + A{\left( {1 + r} \right)^{17}} + ... + A{\left( {1 + r} \right)^2} + A\left( {1 + r} \right)$
Tính: ${A_{18}} = A\left[ {{{\left( {1 + r} \right)}^{18}} + {{\left( {1 + r} \right)}^{17}} + ... + {{\left( {1 + r} \right)}^2} + \left( {1 + r} \right) + 1 - 1} \right]$
$ \Rightarrow {A_{18}} = A\left[ {\dfrac{{{{\left( {1 + r} \right)}^{19}} - 1}}{{\left( {1 + r} \right) - 1}} - 1} \right] = A\left[ {\dfrac{{{{\left( {1 + r} \right)}^{19}} - 1}}{r} - 1} \right] = 12\left[ {\dfrac{{{{\left( {1 + 0,06} \right)}^{19}} - 1}}{{0,06}} - 1} \right] \approx 393,12$
Hướng dẫn giải:
- Lập công thức tính số tiền thu được sau \(18\) năm.
- Áp dụng công thức và tính số tiền thu được.