Câu hỏi:
2 năm trước

Mạch điện R1L1C1 có tần số cộng hưởng \({\omega _1}\)  và mạch R2L2C2 có tần số cộng hưởng \({\omega _2}\)  , biết \({\omega _1} = {\omega _2}\) . Mắc nối tiếp hai mạch đó với nhau thì tần số cộng hưởng của mạch sẽ là \(\omega \). \(\omega \) liên hệ với \({\omega _1}\) và \({\omega _2}\)theo công thức nào? Chọn đáp án đúng:

Trả lời bởi giáo viên

Đáp án đúng: d

Ta có:

\(\begin{array}{l}\omega _1^2 = \dfrac{1}{{{L_1}{C_1}}};\omega _2^2 = \dfrac{1}{{{L_2}{C_2}}}\\{\omega _1} = {\omega _2} \to {L_1}{C_1} = {L_2}{C_2} \to \dfrac{{{L_2}}}{{{L_1}}} = \dfrac{{{C_1}}}{{{C_2}}}\\ \to {\omega ^2} = \dfrac{1}{{({L_1} + {L_2})\dfrac{{{C_1}C{}_2}}{{{C_1} + {C_2}}}}} = \dfrac{1}{{\left( {1 + \dfrac{{{L_2}}}{{{L_1}}}} \right)\dfrac{{{L_1}{C_1}}}{{\dfrac{{{C_1}}}{{{C_2}}} + 1}}}} = \dfrac{1}{{{L_1}{C_1}}} = \omega _1^2\\ \to \omega  = {\omega _1}\end{array}\)

Hướng dẫn giải:

Sử dụng công thức xác định độ tự cảm và điện dung C khi mắc nối tiếp: \({L_{nt}} = {L_1} + {L_2},\dfrac{1}{{{C_{nt}}}} = \dfrac{1}{{{C_1}}} + \dfrac{1}{{{C_2}}}\)

Sử dụng công thức xác định tần số góc khi mạch xảy ra cộng hưởng: \({\omega ^2} = \dfrac{1}{{LC}}\)

Câu hỏi khác