Câu hỏi:
2 năm trước

lim bằng

Trả lời bởi giáo viên

Đáp án đúng: c

Bước 1:

\lim \dfrac{{1 - {3^n}}}{{{2^n} + {{4.3}^n}}} = \lim \dfrac{{\dfrac{1}{{{3^n}}} - 1}}{{\dfrac{{{2^n}}}{{{3^n}}} + 4}}

Bước 2:

\begin{array}{l}\dfrac{1}{3} < 1 \Rightarrow \lim \dfrac{1}{{{3^n}}} = \lim {\left( {\dfrac{1}{3}} \right)^n} = 0\\\dfrac{2}{3} < 1 \Rightarrow \lim \dfrac{{{2^n}}}{{{3^n}}} = \lim {\left( {\dfrac{2}{3}} \right)^n} = 0\end{array}

\Rightarrow \lim \dfrac{{1 - {3^n}}}{{{2^n} + {{4.3}^n}}} = \dfrac{{0 - 1}}{{0 + 4}} = \dfrac{{ - 1}}{4}

Hướng dẫn giải:

Bước 1: Chia cả tử và mẫu cho {3^n}.

Bước 2: Sử dụng công thức \lim {q^n} = 0\forall \left| q \right| < 1 tính giới hạn.

Câu hỏi khác