Câu hỏi:
2 năm trước

Hai đường thẳng $AB$ và $CD$ cắt nhau tại $O.$ Biết \(\widehat {AOC} - \widehat {AOD} = {50^0}.\) Chọn câu đúng.

Trả lời bởi giáo viên

Đáp án đúng: b

 

Vì \(\widehat {AOD}\) và \(\widehat {AOC}\) là hai góc kề bù nên \(\widehat {AOD} + \widehat {AOC} = 180^\circ \) mà \(\widehat {AOC} - \widehat {AOD} = 50^\circ \)

Nên \(\widehat {AOC} = \dfrac{{180^\circ  + 50^\circ }}{2} = 115^\circ \) và \(\widehat {AOD} = 180^\circ  - \widehat {AOC} = 65^\circ \)

Mà \(\widehat {AOD}\) và \(\widehat {BOC}\) là hai góc đối đỉnh nên \(\widehat {BOC} = \widehat {AOD} = 65^\circ .\)

Lại có \(\widehat {BOD}\) và \(\widehat {AOC}\) là hai góc đối đỉnh nên \(\widehat {BOD} = \widehat {AOC} = 115^\circ .\)

Vậy \(\widehat {BOD} = \widehat {AOC} = 115^\circ ;\,\widehat {BOC} = \widehat {AOD} = 65^\circ .\)

Hướng dẫn giải:

+ Sử dụng: Tổng hai góc kề bù bằng \(180^\circ .\)

+ Sử dụng tính chất: Hai góc đối đỉnh thì bằng nhau

Câu hỏi khác