Câu hỏi:
2 năm trước
Giao điểm của hai đường thẳng \(d:\left\{ \begin{array}{l}x = - 3 + 2t\\y = - 2 + 3t\\z = 6 + 4t\end{array} \right.\) và \(d':\left\{ \begin{array}{l}x = 5 + t'\\y = - 1 - 4t'\\z = 20 + t'\end{array} \right.\) có tọa độ là
Trả lời bởi giáo viên
Đáp án đúng: c
Gọi \(M = d \cap d';\) do \(M \in d \Rightarrow M\left( { - 3 + 2t; - 2 + 3t;6 + 4t} \right)\)
\(M \in d' \Rightarrow \left\{ \begin{array}{l} - 3 + 2t = 5 + t'\\ - 2 + 3t = - 1 - 4t'\\6 + 4t = 20 + t'\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}t = 3\\t' = -2\end{array} \right. \Rightarrow M\left( {3;7;18} \right)\)
Hướng dẫn giải:
Giao điểm của hai đường thẳng có tọa độ thỏa mãn cả hai phương trình đường thẳng