Câu hỏi:
2 năm trước

Đoạn mạch xoay chiều RLC nối tiếp , cuộn dây thuần cảm với \(C{R^2} < {\rm{ }}2L\) ; điện áp hai đầu đoạn mạch là \(u{\rm{ }} = {\rm{ }}U\sqrt 2 cos\omega t\) , U ổn định và \(\omega \)  thay đổi . Khi \(\omega {\rm{ }} = {\rm{ }}{\omega _C}\) thì điện áp hai đầu tụ C cực đại và điện áp hiệu dụng hai đầu cuộn dây \({U_L} = \dfrac{{{U_R}}}{{10}}\). Hệ số công suất tiêu thụ của cả đoạn mạch là:

Trả lời bởi giáo viên

Đáp án đúng: c

Theo đầu bài, ta có: \(C{R^2} < {\rm{ }}2L \leftrightarrow {R^2} < 2{Z_L}{Z_C}\) hay \(\dfrac{{{Z_L}}}{R}\dfrac{{{Z_C}}}{R} > \dfrac{1}{2}\)

Khi ω thay đổi, để  điện áp hai đầu tụ C cực đại thì ta có: 

\(\begin{array}{l}\left| {\tan \varphi .\tan {\varphi _{RL}}} \right| = \dfrac{1}{2}\\ \to \left| {\tan \varphi .\dfrac{{{Z_L}}}{R}} \right| = \dfrac{1}{2} \leftrightarrow \tan \varphi .\dfrac{1}{{10}} = \dfrac{1}{2}\\ \to \tan \varphi  = 5 \to c{\rm{os}}\varphi {\rm{ = }}\dfrac{1}{{\sqrt {26} }}\end{array}\)

Hướng dẫn giải:

Vận dụng công thức : \(\tan \varphi  = \dfrac{{{Z_L} - {Z_C}}}{R}\)

Câu hỏi khác