Đồ thị hàm số \(y = \dfrac{{\sqrt {{x^2} + 1} }}{{x - 1}}\) có bao nhiêu tiệm cận?
Trả lời bởi giáo viên
TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có:
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \dfrac{{\sqrt {{x^2} + 1} }}{{x - 1}} = + \infty ,\,\,\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{\sqrt {{x^2} + 1} }}{{x - 1}} = - \infty \)
Suy ra \(x = 1\) là tiệm cận đứng của đồ thị hàm số.
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \dfrac{{\sqrt {{x^2} + 1} }}{{x - 1}} = 1,\,\,\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \dfrac{{\sqrt {{x^2} + 1} }}{{x - 1}} = - 1\)
Suy ra \(y = 1,\,\,y = - 1\) là tiệm cận ngang của đồ thị hàm số.
Vậy đồ thị hàm số đã cho có tất cả 3 đường tiệm cận.
Hướng dẫn giải:
- Tìm ĐKXĐ của hàm số.
- Sử dụng định nghĩa các đường tiệm cận của đồ thị hàm số \(y = f\left( x \right)\):
+ Đường thẳng \(y = {y_0}\) được gọi là TCN của đồ thị hàm số \(y = f\left( x \right)\) nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to + \infty } y = {y_0}\), \(\mathop {\lim }\limits_{x \to - \infty } y = {y_0}\).
+ Đường thẳng \(x = {x_0}\) được gọi là TCN của đồ thị hàm số \(y = f\left( x \right)\) nếu thỏa mãn một trong các điều kiện sau: \(\mathop {\lim }\limits_{x \to x_0^ + } y = + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ + } y = - \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y = + \infty \), \(\mathop {\lim }\limits_{x \to x_0^ - } y = - \infty \).