Câu hỏi:
2 năm trước
Cho \(x\) thỏa mãn \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) - x\left( {{x^2} - 2} \right) = 14.\) Chọn câu đúng.
Trả lời bởi giáo viên
Đáp án đúng: c
Ta có \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right) - x\left( {{x^2} - 2} \right) = 15\)$ \Leftrightarrow {x^3} + {2^3} - \left( {{x^3} - 2x} \right) = 14 $$\Leftrightarrow {x^3} + 8 - {x^3} + 2x = 14$
$ \Leftrightarrow 2x = 6 \Leftrightarrow x = 3$.
Vậy \(x = 3\) .
Hướng dẫn giải:
Sử dụng hằng đẳng thức tổng hai lập phương và phép nhân đa thức để biến đổi về dạng tìm \(x\) thường gặp.