Câu hỏi:
2 năm trước
Cho \(\dfrac{x}{2} = \dfrac{y}{5}\) và \(xy = 10\). Tính $y - x$ biết \(x > 0;y > 0.\)
Trả lời bởi giáo viên
Đáp án đúng: b
Đặt \(\dfrac{x}{2} = \dfrac{y}{5} = k\) ta có \(x = 2k;\,y = 5k\)
Nên \(x.y = 2k.5k = 10{k^2} = 10 \Rightarrow {k^2} = 1\) \( \Rightarrow k = 1\) hoặc \(k = - 1\).
Với \(k = 1\) thì \(x = 2;y = 5\)
Với \(k = - 1\) thì \(x = - 2;y = - 5\)
Vì \(x > 0;y > 0\) nên \(x = 2;y = 5\) từ đó \(y - x = 5 - 2 = 3.\)
Hướng dẫn giải:
Tìm hai số \(x;\,y\) biết $x.y = P$ và \(\dfrac{x}{a} = \dfrac{y}{b}\)
Đặt \(\dfrac{x}{a} = \dfrac{y}{b} = k\) ta có \(x = ka;\,y = kb\)
Nên \(x.y = ka.kb = {k^2}ab = P \Rightarrow {k^2} = \dfrac{P}{{ab}}\)
Từ đó tìm được \(k\) sau đó tìm được \(x,y\).
Suy ra tổng cần tìm.