Cho tam giác \(ABC\) vuông tại \(A\),\(\angle B = {35^0}\)và \(AB{\rm{ }} = {\rm{ 6}}cm\). Vẽ đường cao \(AH\) và trung tuyến \(AM\) của tam giác \(ABC\).
Tính diện tích \(\Delta AHM\)
Trả lời bởi giáo viên
Vì \(AM\) là trung tuyến của tam giác \(ABC \Rightarrow M\) là trung điểm \(BC\)\( \Rightarrow BM = MC = \dfrac{{BC}}{2} \approx 3,66\)
Áp dụng hệ thức lượng cho \(\Delta ABC\) vuông tại \(A,\) có đường cao \(AH\) ta có:
\(AH.BC = AB.AC\)\( \Leftrightarrow AH.7,32 = 6.4,2\)\( \Leftrightarrow AH \approx 3,44\)
\(A{B^2} = BH.CB\)\( \Leftrightarrow {6^2} = BH.7,32\)\( \Leftrightarrow BH \approx 4,92\)
Ta có: \(BM + MH = BH \Leftrightarrow MH = 4,92 - 3,66 \approx 1,26\)
\({S_{\Delta AHM}} = \dfrac{1}{2}AH.MH \approx \dfrac{1}{2}.3,44.1,26 \approx 2,17\,\,\,\left( {đvdt} \right)\)
Hướng dẫn giải:
Sử dụng hệ thức lượng trong tam giác vuông.
Áp dụng công thức tính diện tích tam giác.