Câu hỏi:
2 năm trước

Cho tam giác ABC, lấy các điểm M, N trên cạnh BC sao cho BM = MN = NC. Gọi \({G_1},\,\,{G_2}\) lần lượt là trọng tâm tam giác ABN, ACM. Biết rằng \(\overrightarrow {{G_1}{G_2}} \) được biểu diễn theo hai vecto \(\overrightarrow {AB} ,\,\,\overrightarrow {AC} \) dưới dạng \(\overrightarrow {{G_1}{G_2}}  = x\overrightarrow {AB}  + y\overrightarrow {AC} .\) Khi đó x + y bằng:

Trả lời bởi giáo viên

Đáp án đúng: d

Ta có:\({G_1}\)  trọng tâm tam giác ABN \( \Rightarrow \overrightarrow {A{G_1}}  = \dfrac{2}{3}\overrightarrow {AM} .\)

\({G_2}\)  trọng tâm tam giác ACM \( \Rightarrow \overrightarrow {A{G_2}}  = \dfrac{2}{3}\overrightarrow {AN} .\)

\(\begin{array}{l} \Rightarrow \overrightarrow {{G_1}{G_2}}  = \overrightarrow {{G_1}A}  + \overrightarrow {A{G_2}}  =  - \dfrac{2}{3}\overrightarrow {AM}  + \dfrac{2}{3}\overrightarrow {AN} \\ =  - \dfrac{2}{3}\left( {\overrightarrow {AB}  + \overrightarrow {BM} } \right) + \dfrac{2}{3}\left( {\overrightarrow {AC}  + \overrightarrow {CN} } \right)\\ =  - \dfrac{2}{3}\overrightarrow {AB}  - \dfrac{2}{3}.\dfrac{1}{3}\overrightarrow {BC}  + \dfrac{2}{3}\overrightarrow {AC}  - \dfrac{2}{3}.\dfrac{1}{3}\overrightarrow {BC} \\ =  - \dfrac{2}{3}\overrightarrow {AB}  + \dfrac{2}{3}\overrightarrow {AC}  - \dfrac{4}{9}\overrightarrow {BC} \\ =  - \dfrac{2}{3}\overrightarrow {AB}  + \dfrac{2}{3}\overrightarrow {AC}  - \dfrac{4}{9}\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right)\end{array}\)

 

\(\begin{array}{l} =  - \dfrac{2}{3}\overrightarrow {AB}  + \dfrac{2}{3}\overrightarrow {AC}  - \dfrac{4}{9}\overrightarrow {AC}  + \dfrac{4}{9}\overrightarrow {AB} \\ =  - \dfrac{2}{9}\overrightarrow {AB}  + \dfrac{2}{9}\overrightarrow {AC} .\\ \Rightarrow \left\{ \begin{array}{l}x =  - \dfrac{2}{9}\\y = \dfrac{2}{9}\end{array} \right. \Rightarrow x + y =  - \dfrac{2}{9} + \dfrac{2}{9} = 0.\end{array}\)

Hướng dẫn giải:

Sử dụng các quy tắc vecto và các phép toán trên vecto để biến đổi và tìm x, y.

Câu hỏi khác