Câu hỏi:
2 năm trước

Cho tam giác \(ABC\) có \(BC\) cố định và góc \(A\) bằng \(50^\circ \). Gọi \(D\) là giao điểm của ba đường phân giác trong của tam giác. Tìm quỹ tích điểm \(D\).

Trả lời bởi giáo viên

Đáp án đúng: d

Ta có \(\widehat A = 50^\circ  \Rightarrow \widehat B + \widehat C = 130^\circ \) nên \(\widehat {BDC} + \widehat {DBC} = \dfrac{{130^\circ }}{2} = 65^\circ  \Rightarrow \widehat {BDC} = 115^\circ \)  

Quỹ tích của điểm $D$ là hai cung chứa góc \(115^\circ \) dựng trên đoạn $BC$.

Hướng dẫn giải:

Sử dụng tính chất tia phân giác để tính góc \(BDC\) từ đó sử dụng quỹ tích cung chứa góc

Câu hỏi khác