Câu hỏi:
3 năm trước
Cho \(Q = \left[ {\dfrac{{{{(x - 1)}^2}}}{{3x + {{(x - 1)}^2}}} - \dfrac{{1 - 2{x^2} + 4x}}{{{x^3} - 1}} + \dfrac{1}{{x - 1}}} \right]:\dfrac{{3x}}{{{x^3} + x}}\).
Giá trị nhỏ nhất của \(Q\) với \(x \ge 2\) là:
Trả lời bởi giáo viên
Đáp án đúng: c
Ta có: Q = \(\dfrac{{{x^2} + 1}}{3}\) với \(x \ne 0;x \ne \pm 1\).
Ta có: \({x^2} \ge 4\,\,\forall x \ge 2 \Rightarrow {x^2} + 1 \ge 5\,\,\forall x \ge 2\)\( \Rightarrow \dfrac{{{x^2} + 1}}{3} \ge \dfrac{5}{3} \,\,\forall x \ge 2\).
Dấu “=” xảy ra khi \(x = 2\left( {tm} \right)\).
Vậy \(Min\,\,Q = \dfrac{5}{3} \Leftrightarrow x = 2\).
Hướng dẫn giải:
Sử dụng kết quả câu trước.
Đánh giá \({A^2} + m \ge m,\,\forall A\) , dấu “=” xảy ra khi \(A = 0.\)
