Câu hỏi:
3 năm trước

Cho \(Q = \left[ {\dfrac{{{{(x - 1)}^2}}}{{3x + {{(x - 1)}^2}}} - \dfrac{{1 - 2{x^2} + 4x}}{{{x^3} - 1}} + \dfrac{1}{{x - 1}}} \right]:\dfrac{{3x}}{{{x^3} + x}}\).

Giá trị nhỏ nhất của \(Q\) với \(x \ge 2\) là:

Trả lời bởi giáo viên

Đáp án đúng: c

Ta có: Q = \(\dfrac{{{x^2} + 1}}{3}\)  với \(x \ne 0;x \ne  \pm 1\).

Ta có: \({x^2} \ge 4\,\,\forall x \ge 2 \Rightarrow {x^2} + 1 \ge 5\,\,\forall x \ge 2\)\( \Rightarrow \dfrac{{{x^2} + 1}}{3} \ge \dfrac{5}{3} \,\,\forall x \ge 2\).

Dấu “=” xảy ra khi \(x = 2\left( {tm} \right)\).

Vậy  \(Min\,\,Q = \dfrac{5}{3} \Leftrightarrow x = 2\).

Hướng dẫn giải:

Sử dụng kết quả câu trước.

Đánh giá \({A^2} + m \ge m,\,\forall A\) , dấu “=” xảy ra khi \(A = 0.\)

Câu hỏi khác